
Enterprise Data Warehouse Implementations:

Best Practice Recommendations

Agenda

1) Technical Best Practices For Enterprise Data Warehouse Implementations

a. Data Architecture

i. Data Layers

ii. Dimensions

iii. Facts & Rules

iv. Measures

b. Data Processing

c. Back-End Infrastructure

d. Procedures

2) Lessons Learned from Prior Engagements

3) The eBIS Solution Toolkit

4) About eBIS

3Copyright © 2010 eBIS. All rights reserved.

Enterprise Data Warehouse Implementations:
Technical Best Practices

Technical aspects of an enterprise data warehouse implementation focus on four primary

categories:

1.Data Architecture

2.Data Processing

3.Back-end Infrastructure

4.Procedures

Upfront identification and application of best practices in these categories leads to long-term

cost savings, solution extensibility and increased business adoption. For large, diversified

financial institutions such as Washington Mutual, the need for a proven implementation

approach is even more acute due to varied source inputs and high data volumes, complex data

modeling requirements and significant regulatory compliance considerations. The ensuing

content will identify recommended technical implementation strategies to address these risks.

4Copyright © 2010 eBIS. All rights reserved.

Best Practices: Data Architecture/Data Layers

1.Data Architecture According to Layers of Data Modeling

Conceptually, a data warehouse is a series of data movements. The data model within a warehouse should reflect the reporting
and processing requirements unique to each data layer as data progresses from initial capture through to reporting structures. A
comprehensive data warehouse approach, which includes not just data capture, but both intra-warehouse and outbound analytic
processing and reporting, should include the following 10 modeling layers, at a minimum:

a) Staging Layer: Captures input data in the format resident in source systems

b) Operational Data Store: Models data for offload reporting in source system formats

c) Core Data Warehouse: Conforms all data sources into a normalized data model

d) Analytic Processing Model: Data structures necessary to feed a 3rd party application that functions internal to the
warehouse database

e) Analytic Output / Return Feed Model: Models analytic processing output, both intra-warehouse and as fed back from
external analytic vendors (return loop)

f) Outbound Vendor Model: Data structures necessary to feed a 3rd party application that functions external to the
warehouse database

g) Metadata Model: Structures that house data about data. Useful in application integration and reporting.

h) Error Model: Tables that capture any input data error (dirty data) or processing error

i) History & Archive Model: Schemas that replicate underlying data models for reporting (History schema) and long
term storage (Archive schema)

j) Reporting Data Marts: Star Schema and Snowflake tables relationships constructed according to reporting technology
employed: ROLAP, MOLAP, HOLAP.

Data progresses through these layers in specific sequences, depending on data type and reporting need, as shown in the following

diagram.

5Copyright © 2010 eBIS. All rights reserved.

Best Practices: Data Architecture/Data Layers

6Copyright © 2010 eBIS. All rights reserved.

Best Practices: Data Architecture/Data Layers

�Fully refresh data on every loadProcessing
Approach

�Source all data elements from Staging LayerData Sources

�Store portions of staging columns and rows for offload reporting in native
data structures (likely a subset of Staging)

Data ModelOperational
Data Store

�Limit data retention to period needed for potential re-processing (short
retention period). Reportable rows moved to History and Archive table
schemas.

Data Retention

�Perform only technical data validation on import: duplicate key, field
formatting, etc.

Error Checking

�Capture data from both legacy source systems and return loop analyticsData Sources

�Embed all processing and reporting requirements (current and potential
future) in staging data model

�Replicate structure of source input data model for required data elements

�Model time dimensions to allow for data re-extraction

Data ModelStaging Layer

DescriptionArchitecture
Aspect

Data Layer

Architecture Aspects by Data Layer

7Copyright © 2010 eBIS. All rights reserved.

Best Practices: Data Architecture/Data Layers

�Fully refresh data on every load in order to replicate source system
structures

Processing Approach

�Source from Staging layer and perform extensive data translation into
conformed data elements

Data Sources

�Perform little or no data transformation from Staging tables to ODS tables
to facilitate reporting of native legacy system attributes

Error Checking

�Create conformed, 6th normal form dimensional data relationships with
temporal consistency

�Model complex dimensions encompassing analysis requirements across all
data consumers

�Normalize data model for storage efficiency

�Employ extensive use of surrogate keys to accommodate incremental
source systems

�Model all data elements identified for conformed analytics and reporting.
Absorb future modeling requirements via normalized key structure

�Model business date and data extraction date as keys (minimum time
dimension requirement)

Data ModelCore Data
Warehouse

�Apply data retention and archive rules according to reporting need.
Reportable rows moved to History and Archive table schemas.

Data Retention

Operational
Data Store

DescriptionArchitecture
Aspect

Data Layer

8Copyright © 2010 eBIS. All rights reserved.

Best Practices: Data Architecture/Data Layers

�Capture data according to delivered processing model. Construct processing
engines to translate data from Core Warehouse into Processing Model.

Note: Analytic processing model is only necessary if using a delivered vendor
model. If building custom analytic engines, source directly from Core

Warehouse layer.

Processing Approach

�Use pre-packaged vendor processing model, if applicable, with little or no
customization

�Leverage metadata model to understand relationships between analytic keys
and core warehouse keys

�Build business rules tables to enable multiple versions of rules

Data Model

�Migrate from Core Warehouse Model with conformed key structures intact
wherever possible

Data Sources

Core Data
Warehouse

�Perform referential integrity checks on all rule, fact and measure rows that
contain foreign key relationships to dimension tables

Error Checking

�Apply data retention rules according to analytic output and reporting
traceability requirements. Reportable rows moved to History and Archive table
schemas.

Data Retention

�Capture data using a Type 6 slowly changing data compare process if row
volumes/row change frequency warrant this approach

Processing Approach

Analytic
Processing
Model

DescriptionArchitecture

Aspect

Data Layer

9Copyright © 2010 eBIS. All rights reserved.

Best Practices: Data Architecture/Data Layers

�In analytic processing, check for processing errors and unexpected data patterns

�In return feed processing, check for validity of surrogate keys created in data
warehouse and returned in a loop after external analytic calculations. Validate
referential data as with core warehouse processing.

Error Checking

�Analytic Processing Model, if using pre-packaged vendor processing engines

�Core Data Warehouse Layer, if using custom calculation engines

�Staging Layer for return-loop analytics as received from external calculation
systems

Data Sources

�Employ sophisticated time dimension modeling to track processing of data re-
extracted from source systems or re-processed based on new business rules.

Data Model

�Use delivered 3rd party vendor analytic processing engines

�Develop custom analytic processing engines according to business rules

�Migrate data from staging layer, transformed to meet conformed modeling
standards

Processing
Approach

Analytic

Processing
Model

�Perform error checking according to processing approach. However, source input
row and referential integrity checks already performed in Staging and Core
Warehouse layers, so likely error checking requirements are minimal.

Error Checking

�Apply data retention rules according to analytic and reporting traceability
requirements. Reportable rows moved to History and Archive table schemas.

Data Retention

Analytic Output
/ Return Feed
Model

DescriptionArchitecture
Aspect

Data Layer

10Copyright © 2010 eBIS. All rights reserved.

Best Practices: Data Architecture/Data Layers

�Constructed to capture all rules, decode, reference, link, translation, and
transformation metadata across technologies in conformed, normalized model

�Model permits single source for data regression analysis, enabling “cradle to
grave” reporting

�Isolates physical definitions from logical representations, especially within
reporting tools

Data Model

�As with Staging layer, limit data retention to period needed for potential re-
processing (short retention period). Any reportable rows moved to History
and Archive table schemas.

Data Retention

Outbound Vendor
Model

�Apply data retention rules according to analytic and reporting traceability
requirements. Reportable rows moved to History and Archive table schemas.

Data RetentionAnalytic Output /

Return Feed
Model

�Select from applicable data input sources and apply transformations to meet
format of output data model

Processing
Approach

�Capture processing errors due to code problems or unexpected data patternsError Checking

�Analytic Output / Return Feed Model

�Core Data Warehouse

Data Sources

Metadata Model

�Construct model to meet input data processing requirements in external
processing systems. Acts as outbound staging area.

Data Model

DescriptionArchitecture
Aspect

Data Layer

11Copyright © 2010 eBIS. All rights reserved.

Best Practices: Data Architecture/Data Layers

�Apply data retention rules according to analytic and reporting traceability
requirements. Reportable rows moved to History and Archive table schemas.

Data Retention

Metadata Model �Catalogs object definitions by object category

�Defines process scheduling periodicity, dependencies, sequencing and
relationships to Service Level Agreements (SLAs)

Data Model (Cont.)

�Staging Layer

�Direct data input via user interfaces

Data Sources

�Capture processing errors due to code problems or unexpected data patterns

�Referential data checks likely not applicable, as metadata treated as the
reference for integrity

Error Checking

�Migrate data from staging layer or directly insert to metadata tables

�Slowly change data in target, treated much like rules

Note: Metadata itself used by all other applications during processing to
interpret data inputs before transforming and manipulating them

Processing Approach

DescriptionArchitecture
Aspect

Data Layer

12Copyright © 2010 eBIS. All rights reserved.

Best Practices: Data Architecture/Data Layers

�External data sources

�Staging Layer

�Core Warehouse Layer

�Analytic Processing Model

�History Model

Data Sources

�Built to capture the following types of errors into various (Data Layers):

1. Duplicate Rows (Staging)

2. Field Formatting Errors (Staging)

3. Business Validity Checks: Sums and Tolerances Thresholds
(Staging)

4. Dimensional Referential Integrity (Core Warehouse, Return Feed
Model)

5. Surrogate Key Referential Integrity (Return Feed Model)

6. Processing Errors and Data Anomalies (Analytic Output Model,
Reporting Data Marts)

�Separate physical error data capture by layer: Staging, Core Warehouse,
Return Feed, and Analytic Output/Reporting

Note: Return feed model must delineate from other error capture, as the entire
row is in error if the surrogate key validation fails

Data ModelError Model

DescriptionArchitecture
Aspect

Data Layer

13Copyright © 2010 eBIS. All rights reserved.

Best Practices: Data Architecture/Data Layers

�Data replication, not data manipulation. Options to use 3rd party tool or
replication technologies packaged with chosen database software.

�Synchronicity with upstream layers dependent on reporting latency
requirements

�Facilitates de-coupling of data acquisition and analytic processing from
historical reporting, allowing more efficient management of SAN, database, and
server resources

Processing Approach

�All upstream data sources required for historical reportingData Sources

�Replicates data model across all upstream data layers twice: once for core
historical reporting, and a second time for long-term archiving

�History tables indexed and partitioned for optimal data retrieval

�Archive tables non-indexed to reduce storage overhead

Data Model

�Apply data retention rules according to analytic and reporting traceability
requirements. Reportable rows moved to History and Archive table schemas.

Data Retention

Error Model �Parse data into Error Model as part of all application processing. Within a
technology, build a common procedure that can be called by any routine to
check for and report errors in a consistent manner.

Processing Approach

History and

Archive Model

�Not applicableError Checking

DescriptionArchitecture

Aspect

Data Layer

14Copyright © 2010 eBIS. All rights reserved.

Best Practices: Data Architecture/Data Layers

�Capture processing errors due to code problems or unexpected data patternsError Checking

�Pre-populate reporting structures from applicable History tables

�Dynamically access star schemas/snowflake reporting structures for
dimensional reporting

�Perform data aggregation functions

�Cross-reference reporting vendor tool metadata captured in metadata model
during report generation to logically represent fact and measure data mart
elements

Processing Approach

�History ModelData Sources

�De-normalizes data into highly efficient star schema and snowflake reporting
structures to support ROLAP inquiry

�Create aggregate tables to support MOLAP/HOLAP inquiry

Data Model

�Not applicableData Retention

History and

Archive Model

�Capture processing errors due to code problems or unexpected data patternsError Checking

Reporting Data
Marts

�Not applicable. Data is populated in custom data marts according to
reporting need. All historical input data captured in History and Archive
Model and can be pulled into data marts incrementally.

Data Retention

DescriptionArchitecture
Aspect

Data Layer

15Copyright © 2010 eBIS. All rights reserved.

Best Practices: Data Architecture/Data Layers

2. Normalization/De-normalization Strategies
Model data according to dominant need:

a) Reduced storage cost and modeling flexibility OR

b) Data retrieval efficiency

The layers of data capture generally adhere to the following normalization approach:

�Normalized key required to absorb incremental data processing logic or technologiesNormalizeMetadata Model

�Normalized key required to absorb incremental input sources or technologiesNormalizeError Model

�Data elements required by external vendor relatively staticDe-NormalizeOutbound Vendor Model

�Dynamic data retrieval efficiency top priority for ROLAP tools

�Specific reporting structures driven by defined reporting needs
De-NormalizeReporting Data Marts

�Maintain normalized analytic keys to capture business rule calculation outputNormalizeAnalytic Output Model

�Rules based processing requires flexibility in referencing input rows

�Data retrieval path static based on processing logic
NormalizeAnalytic Processing Model

�Long-term storage required for traceability back from reporting structures

�Normalized key allows flexibility to add source systems and data rows without data model
changes

NormalizeCore Warehouse Model

�Generally mirror source data as captured in staging layer

�Required reporting elements out of ODS are relatively static

�Heavy data access volume from reporting tools

De-NormalizeOperational Data Store

�Source data structures change very slowly

�Data elements required by system are relatively static
De-NormalizeStaging

JustificationNormalization

Approach

Data Layer

16Copyright © 2010 eBIS. All rights reserved.

Best Practices: Data Architecture/Data Layers

3. Atomic Data Capture

a) Model data capture the lowest required data grain in Core Warehouse Layer

b) Model data aggregations and hierarchy relationships in Reporting Layer

4. Transformation Management through Conformed Metadata Capture

a) Create metadata repository that spans applications and technologies

i. Transformation / Expression-Centric, with first transformations occurring from Staging into the Core Warehouse

Layer

ii. Catalogs source system data model structure for dynamic extraction updates into Staging Layer via messaging

iii. Create transformation tree back to originating data pattern – reverse engineer source input value from reporting keys

b) Facilitates analysis of “The Life of a Row” and meets regulatory mandates such as Basel II “Cradle to Grave”
tracking

5. Use of Surrogate Keys for Dimensions, Rules, Facts, and Measures

a) Use surrogate keys to easily adapt to source system additions and changes within existing feeder system rows

b) Provides reporting flexibility to demote surrogate key and display attributes only

c) Eliminates need to maintain integrity between smart key string and non-key attributes

d) Conform all dimensions, facts, and measures, with surrogate keys even if only one source system is applicable;
Merger and acquisition activity and technology changes can make the surrogate key very useful in the future

e) Key assignment should occur at the database level: technology agnostic and easily called by any application

f) Use Numeric key string for efficient joins

17Copyright © 2010 eBIS. All rights reserved.

Best Practices: Data Architecture/Data Layers

6. Reporting Foundation

a) Translate base grain dimension and reference values into hierarchies in reporting layer

b) Use trees and flattened trees to represent hierarchy relationships

c) Use time spans against time dimension grain to drive report generation

d) Determine reporting requirements before building reporting tables. Use a set of requirement
variables to determine the appropriate technology to choose (ROLAP, MOLAP, HOLAP):

i. Number of users

ii. Frequency of data refresh

iii. Frequency of report access

iv. Amount of data

v. Grain of data

vi. Complexity of calculations

vii. Drill down requirements

e) Use varied reporting delivery methods, depending on business need:

i. Pull: reporting portal, worklists, other intermediate report staging for analysis at user discretion

ii. Push: email, auto-print

iii. Dynamic creation: ROLAP user inquiry

f) Avoid an attempt to embed reporting of synchronous data via a data warehouse.

Heterogeneous sources, including both synchronous and asynchronous data, may

feed a reporting tool.

i. Example: Combine total exposure to Countrywide Financial (data warehouse, asynchronous) with current stock price of

Countrywide Financial (Bloomberg, synchronous) via chosen reporting tool

18Copyright © 2010 eBIS. All rights reserved.

Best Practices: Data Architecture/Dimensions

�Type 1: Identifies calculation method related to time dimension, e.g., Average, High, Low,
Beginning, End, Mid-Point

�Type 2: Groups Accounts for analysis, e.g., Accrued Interest, Notional Amount, Principal
Balance

Balance Type

�Identifies geographic regions

�A one-to-one or many relationship to the locations defined on other dimensions, e.g.,
Department, Customer

Geography

�Defines the lowest grain of entity definition in a warehouseDepartment

�Defines a counterparty in a transaction

�Can be either external, internal, or potentially internal
Customer

�An avenue through which sales are executed

�Examples: Internet, Branch, Private Bank, Wholesale
Channel

�Fed from Financials General Ledger definition of Balance Sheet, Income Statement, or Off
Balance Sheet AccountsAccount

DescriptionDimension

1. Dimensions to Model

a) Model dimensions that are necessary for robust reporting, such as:

19Copyright © 2010 eBIS. All rights reserved.

Best Practices: Data Architecture/Dimensions

�Defines the grain of entity used for external reporting

�A one-to-one or many relationship to Department
Legal Entity

�A good or service that is bought or sold internally or externally

�A product can be modeled several ways, often simultaneously, against a common grain of data

a) Financial

Identifies the financial attributes necessary to price, and determine the value of, a
product for external reporting

b) Profitability

Identifies the financial attributes necessary to price, value, and assess the riskiness
of a product for internal management reporting

c) Credit

Identifies common credit risk attributes: Extension of Credit, Business Context,
Term, Mitigation, etc

Product

�Defines the temporal context of a row of data

�Meaning dependent on type of data (Rule, Fact, Balance, etc.) relative to data population method
(Change Data Capture, Full Refresh)

�Multiple time dimensions can be used together on a single row to create detailed
representations of data applicability

Time

DescriptionDimension

b) Model every required dimension with only those attributes that are unique within its key
definition and populate the dimension key as a foreign key on facts and measures

c) Dimension attributes may also be foreign keys of other dimensions, e.g., Time

20Copyright © 2010 eBIS. All rights reserved.

Best Practices: Data Architecture/Dimensions

2. Time Dimension Requirements

• Fact/Measure Time Dimensions

a) Extraction Date

i. Facilitates re-extraction of bad data and back values instead of updates to existing rows

b) Business Analysis Date

i. Represents the date applicable for analysis of a row in a business context

ii. Intra-day volatility considerations can necessitate grain modeling below day, e.g., hour or minute

iii. Regional / Business Unit specific holidays should be applied to the analysis of this date

c) Fiscal Year / Accounting Period Calendar

i. Tied to Legal Entity dimension to allow for varying fiscal years, e.g., April 1st is Accounting Period 1

d) Warehouse Processing Date

i. Date the row of data was processed within the warehouse

e) Publication Date

i. Date the row of data was deemed valid for analysis by downstream users

Note: Assumes single date dimension, business date, is modeled in source systems

• Rule Time Dimensions

f) Effective Date

i. Beginning date for analysis; applicable until newer row of data received against like non-time keys

ii. Requires change data capture data population for appropriate analysis

g) Last Update Date/Time

i. Date and time that a user last updated the row of data

ii. Non-key time dimension to track user activity

21Copyright © 2010 eBIS. All rights reserved.

Best Practices: Data Architecture/Dimensions

3. Use of Reference Tables

Model all types of reference data, not just complex dimensions. Categorize table creation according
to the following reference types:

a) Reference (Simple Dimension)

i. Conformed high level key with limited attributes

ii. Includes both custom reference data, e.g., Industry Code, and common reference data, e.g., Standard Industry Code (SIC)

b) Decode

i. High level key with description field

c) Translate

i. Translates source system specific value into conformed warehouse value

d) Conversion

i. Tracks relationships between old data values and current data values, e.g., merged dimensions

4. Restatements and Conforming old data values to new Dimension Members

a) Use conversion tables for merging dimensions

b) Use conversion tables in combination with surrogate keys for consistent analysis of changing source
system inputs through time

22Copyright © 2010 eBIS. All rights reserved.

Best Practices: Data Architecture/Facts & Rules

1. Abstraction of non-key attributes to minimize data model complexity
a) Normalize fact and rule records by key value of ‘Attribute Type’

b) Model Non-key columns based on common input field formats

c) An important balance must be drawn between logical groupings of attributes by table and data model
transparency

i. Grouping at too low a level leads to confusion on row placement and complexity in data extraction

ii. Grouping at too high a level leads to significant non-key column abstraction and low data cardinality

2. Use of ‘Master’ tables

a) Implement master tables for facts and rules, as well as dimensions, which contain every row at a given
data grain and are resolved for surrogate key assignment

b) At a minimum, master tables must contain the columns used for surrogate key assignment, but may
also contain elements common to that data grain, depending on the chosen data model approach

3. Use of status indicators on fact tables vs. rule tables
a) Fact: Use conformed status value to add texture to observed balance value

i. A fact attribute status in isolation is meaningless, other than to validate the absence of a balance

ii. In situations where a fact status conflicts with an attendant measure, the measure dominates

b) Rule: Drives interpretation and applies to equivalent processing or analysis date

i. An inactive rule should be bypassed during analysis, whereas an inactive fact adds a point of analysis to a balance,
sometimes indicating a source system problem if the two conflict

23Copyright © 2010 eBIS. All rights reserved.

Best Practices: Data Architecture/Measures

1. Modeling of Zero balances

a) Do not populate, except in back value and aggregation feeds

i. In most situations, the absence of a row can be interpreted the same way as a zero balance

b) Useful in back value situations, to update a non-zero position to zero

c) Useful in aggregate feeds, where non-zero balances can indicate a meaningful summed calculation to
zero (Example: Mark-to-Market balances for derivatives pools)

d) Trend analysis on back value frequency allows for monitoring of improvements in source system
balance capture

2. Non-Daily system balance modeling: Pull forward balances vs. single input

balance

a) Model non-daily system balances based on frequency of data capture in Staging, ODS and Core
Warehouse Model

b) Pull forward non-daily system balances for consistent daily portfolio modeling into analytic model
and reporting layers

i. Care must be taken to match the balance frequency between source values and two points of analysis:
risk/profitability analytics and external reporting tools, such as the General Ledger

24Copyright © 2010 eBIS. All rights reserved.

Best Practices: Data Architecture/Measures

3. Multiple representations of balance calculations via Normalized Model or

Scenario key

a) Create a normalized analytic output key to represent the rules used to calculate a balance. Examples
of balance calculation rule types:

i. Regulatory

ii. Accounting

iii. Credit

iv. Financial Profitability

b) Quells risk and profitability modeling frustrations, such as: “I won’t be held hostage to an accounting
rule”

4. Currency modeling in Measures

a) Identify currency balances required across all reporting in Core Warehouse layer

i. Transaction Currency

ii. Base Currency of Legal Entity

iii. Consolidated Currency

b) Convert from transaction currency to required currencies during staging to core warehouse
transformation step

c) Additional currency translations can be performed for specific reports against the transaction
currency amount in the Reporting Layer of the warehouse; convert in the Warehouse Model only the
currency balances that are consistently analyzed

25Copyright © 2010 eBIS. All rights reserved.

Best Practices: Data Processing

1. Inbound/Outbound Data Processing

a) Endeavor to leverage a Service Oriented Architecture driven by publish and subscribe network
messaging as opposed to file system based triggers. A typical file system-driven warehouse
processing framework is depicted below.

26Copyright © 2010 eBIS. All rights reserved.

Best Practices: Data Processing

b) Architect network messaging to be either synchronous or asynchronous, via publish and subscribe
technology, with data extraction and replication according to business need and processing capacity
constraints. A message-driven processing architecture is depicted below, which reduces data
redundancy and latency and file storage costs.

27Copyright © 2010 eBIS. All rights reserved.

Best Practices: Data Processing

2. Tool-Based Load Validation

a) Develop self-correcting mechanisms, such as stored procedures, to correct input data before it

is loaded

Example: Trigger re-creation of staging table to match source input if appropriate change

notification is received

3. The Change Data Capture (CDC) Implementation Decision

a) Follow 2 vectors to determine the appropriate data capture approach: CDC or data refresh

i. Slow vs. Fast Changes

ii. Data Volume vs. Join Complexity

Examples: A source with fast changes and low data volume is a good candidate for data refresh.

A source with slow changes and high data volume is a good candidate for CDC, depending on its

use in reporting/join complexity

b) If implemented, Change Data Capture should be target based

i. Execute all transformations before comparing input row to target

28Copyright © 2010 eBIS. All rights reserved.

Best Practices: Data Processing

4. Re-Extract vs. Re-Process Paradigm: Integration with Error Reporting

a) Re-extract rather than re-process error rows and columns

b) Source systems own source data and should correct duplicate rows, formatting errors and

dimensional referential inconsistencies and then re-extract data for downstream use

c) Re-processing of error rows, with error correction within the data warehouse, obviates source

system data ownership, which is counter to a warehouse’s purpose. A warehouse should act as

an analysis arena, with data remediation executed in providing systems, and then re-extracted

to a warehouse.

d) For referential integrity, over-write realized errors in row columns to a conformed

representation of an error, e.g., ‘00000’

e) Realized errors in rows (duplicates) are more difficult to interpret. Capture the first of the

duplicate rows for onward processing and parse the duplicates to an error table for

remediation.

f) Endeavor to automate notification to source systems of data errors via network messaging and

automate the re-extraction of data via publish and subscribe as if it were a normal daily feed

Note: The time dimensions modeled in all of the warehouse data layers should accommodate both

re-extraction and normal daily processing

29Copyright © 2010 eBIS. All rights reserved.

Best Practices: Data Processing

5. Technology Agnostic Batch Scheduling/Message Management

a) Use APIs to centrally schedule and manage batch load

b) Employ significant use of dependencies for event-based triggers

c) Employ both time and event-based processing to ensure process execution in cases where

event triggers are not realized

d) Ensure that time-based triggers do non pre-maturely instantiate processing in instances of

early arriving facts or late arriving dimensions

i. If scheduling is not configured properly, misleading errors could result in Error Model

e) Create system specific scheduling metadata that identifies a calendar of data availability

f) Consolidated daily processing dependencies read from universe of system-specific metadata

calendars

g) Create a logical processing flow according to processing schedule dependencies that can be

validated against observed execution

i. Create negative error reports to highlight data inputs that were expected but not received

h) Subscribe at the lowest temporal frequency, e.g., daily, regardless of projected data

availability, e.g., daily, monthly, quarterly, and incorporate expected input periodicity in

negative error reporting

30Copyright © 2010 eBIS. All rights reserved.

Best Practices: Data Processing

6. Processing Based on Common Run Control Parameters

a) Define a set of parameters that drive processing and feed those parameters into a common
program to resolve from source and delete from target

b) In the context of complex time dimension modeling, endeavor to supply a single time
dimension to drive processing, the interpretation of which depends on the type of table being
resolved (Balance vs. Fact vs. Rule) and the type of process being executed (Source data
capture vs. Analytics vs. Reporting)

i. If parallel processing is required against multiple dates, supply a processing time-span to the run control and let the resolve process parse data into
date threads

7. Table Reads

a) Employ the use of uncommitted reads, tied to batch dependencies, during processing

b) Dependency metadata ensures all relevant data is available when a read is invoked

c) Uncommitted database reads avoid table locking and database-level time-outs

8. Use of inserts in processing

a) Avoid update statements, which can cause temporal inconsistencies

b) Recommendation for partitioned data processing to facilitate multi-threaded process execution
within (data chunking) or across (multi-batch) time dimensions

c) Normalization strategies enable inserts on target tables

d) Time dimension modeling enables inserts on re-extract or back-value feeds

e) Inserts used in combination with target delete logic based on source input time dimension
combinations and other processing keys

31Copyright © 2010 eBIS. All rights reserved.

Best Practices: Data Processing

9. Use of non-indexed tables

a) Employ non-indexed tables wherever possible for efficient processing and inserts

b) Rely on Data Resolve processing, e.g., parsing data into temp table space for processing, and
target table index keys for data integrity; allow intermediate processing to occur without
index overhead

10. Consolidations and Eliminations
a) Provide visibility to rules that govern data consolidation as defined within General

Ledger/Financial Reporting application

b) Apply rules consistently during processing across data grains (Instrument, Facility, Ledger)
and data layers (ODS, Core Warehouse, Reporting, etc.)

c) Consistent application of consolidation rules within the warehouse allows for tight
reconciliation of low data grains, e.g., Instrument and Facility, with General Ledger

32Copyright © 2010 eBIS. All rights reserved.

Best Practices: Back-end Infrastructure

1. Database Instances

a) Recommended databases and their functions
i. DMO: Training/Demonstrations/Sandbox Exploration

ii. SYS: Application code changes & Upgrades

iii. DEV: Development and unit testing

iv. SIT: End-to-End batch integration and capacity tests

v. UAT: Business logic user acceptance testing

vi. STG: Production migration staging

vii. PROD: Production Processing, Historical reporting, and Archiving

viii. FIX: Production Fixes

ix. REPR: Historical processing or re-processing

33Copyright © 2010 eBIS. All rights reserved.

Best Practices: Back-end Infrastructure

2. Data Archive Strategies: Infrastructure impacts

a) Buy big server boxes! Favor multiple servers servicing a single database as opposed to

multiple databases on multiple servers

b) Consolidate History and Archive table schemas on same database instance as Production

schema

c) Rule-based data migrations from Production � History � Archive table schemas within
single database environment

3. Historical Re-Processing

a) Re-processing is needed in cases of business rule restatements, mergers, and acquisitions

b) Should occur in REPR environment configured for significant temporal parallelism and

variable, but usually high, data volumes; contrasts with PROD, which is configured for a set of

daily processes, where input data volumes are stable and output data normally grows linearly.

c) Data migration should occur from REPR environment to history and archive table schemas

within PROD environment, with tight archive rule coordination

34Copyright © 2010 eBIS. All rights reserved.

Best Practices: Back-end Infrastructure

4. Refresh and Restore Strategies

a) All environments should be refreshed from PROD instance

b) Incremental development in test environments (DEV, SIT, UAT) and not in PROD, as identified through
compare reports, should be backed up prior to refresh and then restored

c) The frequency of environment refresh depends on factors such as testing need (DEV, SIT, UAT), realized
production problems (FIX) and historical reprocessing requirements (REPR)

d) Endeavor to not allow test environments to become stale; the efficacy of test cycles rely on accurate and
relevant test data

5. Redundancy Approaches

a) Create two levels of database environment redundancy: Failover and Disaster Recovery

i. Failover environment writes to SAN synchronously with PROD environment and provides a real-time image of PROD data

ii. Disaster recovery is a cold database backup of PROD, replicated at set intervals, usually weekly. A disaster recovery restore, combined with
PROD database logs, provides a method to restore and recover from a hot database “double default”

6. Levels of Security Administration

• Apply Security at Three Levels:

a) Server / Operating System

i. Database command restrictions – update, delete, create, select – based on OS User Id

b) Application

i. User Id level security for application interfaces and batch scheduling

ii. Row or column level security to address data sensitivity concerns in reporting layer

c) Network

i. User Id sign-on integration across applications, e.g., LDAP

ii. I.P. address authentication for data transmission encryption within and across networks

35Copyright © 2010 eBIS. All rights reserved.

Best Practices: Procedures

1. Development standards

a) Define best practice, repeatable development standards for

i. Object naming and formatting

ii. Object structure

iii. API use

iv. Batch scheduling

v. Security integration

b) Apply consistently across technologies and project teams

2. Test technical development in three distinct phases

a) Unit Testing

i. Developer-centric testing of defined business requirements during development cycle

b) Batch integration and performance testing

i. Full data cycle testing of batch metadata dependencies and subscribe technology

ii. Full production processing simulation with capture of capacity utilization metrics; analyze performance against existing SAN, O/S, DB, and

server configurations

c) Business user acceptance testing

i. Source table to Target table (across warehouse data layers) and User Interface testing

ii. Row counts, then attribute and measure validation with scripts that replicate processing code

iii. Regression test all previous passed tests once the last business test is satisfied

iv. Validate all downstream processing output as business integration test

36Copyright © 2010 eBIS. All rights reserved.

Best Practices: Procedures

3. Object Migration Procedures

a) Match environments to definition of test phases

i. DEV � Unit Testing

ii. SIT � Batch integration and performance testing

iii. UAT � Business User acceptance testing

b) Create standard migration request form template to track acceptable objects and data for

migration, and define procedures to rebuild the objects in the target environment

c) Define criteria that must be satisfied, with appropriate oversight and approval, for promotion

across environments

d) Separate migration from development duties by designating an application administrator who

manages all migrations

e) Validate objects and data in target to ensure successful migration and environment

consistency

4. Implement version control with all warehouse database objects

a) Accomplished through delivered vendor package, versioning add-on or through file-based

project backups of all objects migrated across environments

i. Enables roll-back of object development should it be necessary during testing cycles or as a Production fix

Note: Data versioning accomplished via time dimension keys within tables

37Copyright © 2010 eBIS. All rights reserved.

Best Practices: Procedures

5. Change Management

a) Employ a central calendar for Data, Technology, etc. changes with explicit approval by

effected parties

b) Apply consistent procedure both upstream and downstream (Warehouse affecting other

applications)

6. Error Remediation

a) Analyze errors captured in Error Model across layers of data movement

b) Implement communication plan with source system and warehouse technology owners to

disseminate reporting of errors

c) Establish remediation procedures to improve source data capture or processing logic

d) Track efficacy of fixes against relative frequency of error capture

38Copyright © 2010 eBIS. All rights reserved.

Experience Behind Recommendations:
Lessons Learned from Prior Engagements

Best practices emerge from experience. Successes, and perhaps more importantly, failures,
form extensible knowledge capital. The preceding technical recommendations were
distilled from experience at over 15 enterprise data warehouse implementations at
large banking or broker/dealer institutions. The following chart summarizes the
areas in which we learned important lessons, both from our successes and failures:

Allocate sufficient time to execute a new data warehouse in parallel
with legacy reporting solutions. Before cut-over, a significant
effort is involved to migrate, convert and cleanse production data
used in the parallel phase that does not meet cut-over standards.

Production Parallel
Phase 4.

Project success is usually constrained by divergent Business and
IT goals. Ensure Sponsorship clearly defines and communicates
Program goals and obtains buy-in from both business and IT
stakeholders.

Business &
Information
Technology
Cooperation

1.

Implement a project in phases to reduce scope risk and allow
calibration of implementation techniques. Recommended Phases:
1) Proof of Concept; 2) Source Data Capture; 3)
Analytics/Outbound Integration; 4) History/Archive; 5)
Reporting; 6) Parallel/Steady State

Implementation
Phases3.

Large, complex data warehouse projects take longer than initially
anticipated to implement successfully. Don’t be afraid of the truth!
Allocate sufficient time for project planning at two key junctures:
end of Scope phase and end of Design phase. The level of
implementation effort is not know with certainty until a design is
approved. Take the path of best design, which lowers the cost of
long-term ownership, and revisit project planning against that
design. Allocate sufficient project slack to account for Subject
Matter Expert (SME) over-capacity throughout a project lifecycle,
especially leading up to and during the test phase.

Effort/Time
Estimation2.

Project

Planning

Category Lesson
Number

Lesson DescriptionArea

39Copyright © 2010 eBIS. All rights reserved.

Lessons Learned From Prior Engagements

Structure an implementation program with adequate checks,
balances, and approvals through oversight committees.
Leverage skill sets to review and approve across program layers
and development lifecycle.

Oversight5.

Don’t buy into a delivered vendor data model if Enterprise-wide
data reporting is required. Model data based on source systems
and create fact records based on logical groupings and common
physical columns. Invest time to model robust dimensions. A
warehouse is only as good as the attributes of its dimensions.

Delivered Data Models8.Data

Architecture

Project

Planning

Category

Reporting requirements should drive data acquisition. Analyze
reporting and data security requirements of constituents
upfront. The latency in project roll-out between data
acquisition and reporting does not mean reporting
requirements should be analyzed last. The grain of data
acquisition should be at least as granular as that of the lowest
level report detail. Grain and volume of data to report against
should influence the selection of a vendor tool by required
technology (ROLAP, MOLAP, HOLAP) and resulting data
mart schemas.

Data Acquisition &
Reporting9.

Normalize the core warehouse, metadata and error models as
much as possible. Change is inevitable, and normalized table
structures, along with surrogate keys, can adapt easily to new
data sources and modeling requirements.

Normalization10.

Include Support estimation as part of Design Phase. Identify
required skill sets for long-term support and recruit, hire, and
train support staff during Development Phase. Allocate
sufficient time for SMEs to transfer knowledge to internal staff.

Clearly define the roles and responsibilities of required
resources. Identify attendant required skill sets, and acquire
only those resources who have those skills. Do not assign
resources to roles simply because they are available or of low
cost!

Lesson Description

Estimation of Support
Need7.

Resource Skill Sets6.

AreaLesson
Number

40Copyright © 2010 eBIS. All rights reserved.

Lessons Learned From Prior Engagements

Generalize the batch management tool to process independent
of application technology. Establish batch scheduling
metadata that drives batch execution according to input
messages and defined processing predecessors. Create
processing calendars, defined at the lowest temporal execution
grain.

Processing/Batch
Management15.

The time dimension requires the most forethought for proper
modeling. It allows analysis of back valued and re-extracted
data patterns if modeled correctly. Lowest temporal grain
modeling permits translation to varied fiscal calendars.

The Time Dimension11.

Define a metadata repository that conforms object definition
and data transformation across technologies. In particular,
clear definition of surrogate keys allows for consistent key use
by warehouse tools. The handshake between technologies is
one of the tallest implementation hurdles to overcome, and
conformed metadata helps integrate disparate toolsets.

Metadata Management13.

Take care to identify potentially internal customers.
Regulations O, 23A, and 23B all govern reporting of
transactions with closely held or related subsidiaries. An
internal designation is often a function of a reporting view,
e.g., Parent vs. Bank, so “potentially internal” is a warehouse-
assigned flag that should drive analysis in specific reports.

The Customer
Dimension12.

Data

Architecture

Implement seamless application integration via a Service
Oriented Architecture with heavy use of publish and subscribe
network messaging. File-based data movement is time instead
of event-based, consumes significant file system resources, and
requires manual source system intervention in cases of data re-
extraction.

Application Messaging
vs. File System Data
Flow

14.Data

Processing

Category

Use consistent run control parameters to govern batch
execution. Create categories of run controls, usually by
technology, that define the parameters fed to processes at
execution. Each category should have a consistent set of
parameters that drive processing. Otherwise, automated
update management of the run controls is much more difficult.

Lesson Description

Run Control
Configuration16.

AreaLesson
Number

41Copyright © 2010 eBIS. All rights reserved.

Lessons Learned From Prior Engagements

Don’t automatically implement CDC. While changing data rows
slowly reduces storage cost, it introduces time dimension join
complexity that can impede downstream processing efficiency. A
data full refresh, combined with data archive rules, may offer
more advantages. Strategize data capture by data type and input
source, and thoroughly weigh the costs and benefits of an
approach before choosing a design.

The Change Data
Capture (CDC)
Decision

18.

Do not delete and re-insert data within a data warehouse.
Previous versions of data may have been disseminated and
analyzed in downstream applications and reports. Implement
processing logic that inserts new versions of old data in concert
with time dimension modeling in target tables. In this way, prior
analysis can be married with previous data versions.

Re-Extraction of
data from source
systems

17.

Surrogate keys are critical in data models to consistently identify
a rule, fact, or dimension through time. Data sources and data
patterns that identify unique rows are fluid, and a data warehouse
can react dynamically to these changes if it assigns surrogate
keys. The process to assign these keys should occur at the
database level via a database function, not through a specific
vendor tool. In this way, any technology can assign surrogate
keys in any data layer through a database function call.

Technology agnostic
surrogate key
assignment

19.

Data

Processing

Select a vendor tool that provides a flexible development
platform. Enterprise Data Warehouses for financial institutions
invariably require significant customization and development
work; the flexibility of the toolset, especially availability of APIs,
is critical to success.

Development
Platform20.

Create database instances according to testing phases, production
fixes, and historical reprocessing needs. In each instance,
integrate data capture, analytics, and reporting in a consolidated
data model. Doing so permits a single production database
instance, which minimizes data redundancy and maximizes
metadata transformation visibility. Include processing, as well as
history and archive, table schemas in the same instance to feed
reporting technologies seamlessly.

Database Instance
Management21.

Back-end

Infrastructure

Category Lesson DescriptionAreaLesson
Number

42Copyright © 2010 eBIS. All rights reserved.

Lessons Learned From Prior Engagements

Administer security at a minimum of three levels: Network,
Operating System, and Application. Do not neglect the
importance of data security, both while in transit across the
network and once captured in a database, especially
conformance to regulatory requirements.

Security
Administration22.

Implement a procedure to track changes in development
objects over time. Version tracking enables easier analysis of
Production problems and validation of database instance
migration requests.

Version control25.

Establish upstream system protocols to clearly define and
communicate system changes. Require downstream
acknowledgement of changes prior to implementation.
Establish central IT change calendar to track pending
changes.

Data & Application
Changes26.

Leverage benchmarks and conduct capacity tests early in a
project lifecycle to estimate hardware needs. Extrapolate
observed capacity test results in relation to estimated
database instances, data volume, and processing volume to
project optimal hardware configuration.

Infrastructure
Capacity and
Performance

23.

Back-end

Infrastructure

Apply object naming and development structure standards
across data modeling layers and technologies. Centrally
monitor object creation and naming standards. Consistency
of object structure and common identification across
technologies leads to transparency and increased adoption
rates.

Object Naming &
Development
Structure

24.

Data is invariably dirty once enterprise standards are applied.
The main benefit of data warehousing is the ability to analyze
data consistently, regardless of source system or source data
model. When data errors are discovered, implement a
procedure to fix input data errors within source systems,
rather than within the warehouse. This approach will ensure
data quality forward in time. Source data owners must be
willing to participate actively in the data governance process.

Data Error
Remediation27.

Procedures

Category Lesson DescriptionAreaLesson
Number

43Copyright © 2010 eBIS. All rights reserved.

The eBIS Solution Toolkit

44Copyright © 2010 eBIS. All rights reserved.

About eBIS

eBIS is a privately held strategy consulting and technology solutions company with
close to ten years of experience in bridging gaps between business ideas and

technology solutions for the financial services industry. Leveraging understanding of
both enterprise financial risks and technologies that can quantify and mitigate them,
eBIS partners with clients to deliver value-added business solutions. eBIS specializes
in strategic advisory services, systems architecture engineering and risk analytics
modeling using proven best practices, reusable solution toolkits and innovative

problem solving. The company’s client list includes top ten international and U.S.
financial institutions in commercial and retail banking, investment banking and asset
management. www.ebis.biz

